30 research outputs found

    Systematic Two-Hybrid and Comparative Proteomic Analyses Reveal Novel Yeast Pre-mRNA Splicing Factors Connected to Prp19

    Get PDF
    Prp19 is the founding member of the NineTeen Complex, or NTC, which is a spliceosomal subcomplex essential for spliceosome activation. To define Prp19 connectivity and dynamic protein interactions within the spliceosome, we systematically queried the Saccharomyces cerevisiae proteome for Prp19 WD40 domain interaction partners by two-hybrid analysis. We report that in addition to S. cerevisiae Cwc2, the splicing factor Prp17 binds directly to the Prp19 WD40 domain in a 1∶1 ratio. Prp17 binds simultaneously with Cwc2 indicating that it is part of the core NTC complex. We also find that the previously uncharacterized protein Urn1 (Dre4 in Schizosaccharomyces pombe) directly interacts with Prp19, and that Dre4 is conditionally required for pre-mRNA splicing in S. pombe. S. pombe Dre4 and S. cerevisiae Urn1 co-purify U2, U5, and U6 snRNAs and multiple splicing factors, and dre4Δ and urn1Δ strains display numerous negative genetic interactions with known splicing mutants. The S. pombe Prp19-containing Dre4 complex co-purifies three previously uncharacterized proteins that participate in pre-mRNA splicing, likely before spliceosome activation. Our multi-faceted approach has revealed new low abundance splicing factors connected to NTC function, provides evidence for distinct Prp19 containing complexes, and underscores the role of the Prp19 WD40 domain as a splicing scaffold

    Exon, intron and splice site locations in the spliceosomal B complex

    No full text
    In recent years, electron microscopy (EM) has allowed the generation of three-dimensional structure maps of several spliceosomal complexes. However, owing to their limited resolution, little is known at present about the location of the pre-mRNA, the spliceosomal small nuclear ribonucleoprotein or the spliceosome's active site within these structures. In this work, we used EM to localise the intron and the 5′ and 3′ exons of a model pre-mRNA, as well as the U2-associated protein SF3b155, in pre-catalytic spliceosomes (i.e. B complexes) by labelling them with an antibody that bears colloidal gold. Our data reveal that the intron and both exons, together with SF3b155, are located in specific regions of the head domain of the B complex. These results represent an important first step towards identifying functional sites in the spliceosome. The gold-labelling method adopted here can be applied to other spliceosomal complexes and may thus contribute significantly to our overall understanding of the pre-mRNA splicing process

    The U11/U12 snRNP 65K protein acts as a molecular bridge, binding the U12 snRNA and U11-59K protein

    No full text
    U11 and U12 interact cooperatively with the 5′ splice site and branch site of pre-mRNA as a stable preformed di-snRNP complex, thereby bridging the 5′ and 3′ ends of the intron within the U12-dependent prespliceosome. To identify proteins contributing to di-snRNP formation and intron bridging, we investigated protein–protein and protein–RNA interactions between components of the U11/U12 snRNP. We demonstrate that the U11/U12-65K protein possesses dual binding activity, interacting directly with U12 snRNA via its C-terminal RRM and the U11-associated 59K protein via its N-terminal half. We provide evidence that, in contrast to the previously published U12 snRNA secondary structure model, the 3′ half of U12 forms an extended stem-loop with a highly conserved seven-nucleotide loop and that the latter serves as the 65K binding site. Addition of an oligonucleotide comprising the 65K binding site to an in vitro splicing reaction inhibited U12-dependent, but not U2-dependent, pre-mRNA splicing. Taken together, these data suggest that U11/U12-65K and U11-59K contribute to di-snRNP formation and intron bridging in the minor prespliceosome
    corecore